# 多標籤深度學習分類於胸部X光影 像之應用

Multi-label deep learning classification of chest

x-rays

傅琦佳、黃冠華 國立交通大學 統計學研究所 2020/08/21

#### Chest x-ray images



### Introduction



#### To build a computer-aided diagnosis system for chest x-rays

- The demand for medical image analysis is higher and the burden on the medical system is increasing
- Computer-aided diagnosis system is superior to human-based approaches (more efficient, more accurate, regardless of radiologist experience)
- Deep learning is data-hungry, while medical image data is rare. (tough and expensive to collect or label)
- Chest x-rays' size is large (1024x1024) but the lesion area is small, with multiple diseases in one image

#### Contribution

Chance & Challenge

Use transfer learning technique to borrow information from large publicly available data (ImageNet & ChestX-ray8) to enhance the performance of deep learning prediction in our small-sized data

### Introduction

Dataset

Target data

| Label    | Categories                     | Sample Size                         | Subcategory                                      | Sample Size |
|----------|--------------------------------|-------------------------------------|--------------------------------------------------|-------------|
| normal   | normal                         | 1314                                | normal                                           | 1314        |
|          |                                |                                     | aortic arch atherosclerotic plaque               | 28          |
|          |                                | 01                                  | aortic arch calcification                        | 16          |
|          |                                | Sample SizeSubcategorySam1314normal | 25                                               |             |
|          |                                |                                     | aortic wall calcification                        | 22          |
|          | artorial curvaturo             | 06                                  | Aortic curvature                                 | 67          |
|          |                                | 96                                  | Thoracic vertebral artery curvature              | 29          |
|          |                                | 33                                  | small pulmonary nodules                          | 5           |
|          | abnormal lung fields           |                                     | shadows of pulmonary nodules                     | 8           |
|          |                                |                                     | tuberculosis                                     | 5           |
| diseases |                                |                                     | pulmonary fibrosis                               | 15          |
| normal a |                                |                                     | increased lung streak                            | 24          |
|          | increased lung patterns        | 154                                 | lung field infiltration                          | 85          |
|          |                                |                                     | obvious hilar                                    | 45          |
|          | spinal lesions                 | 151                                 | degenerative joint disease of the thoracic spine | 76          |
|          |                                |                                     | scoliosis                                        | 75          |
| -        | intercostal pleural thickening | 36                                  | intercostal pleural thickening                   | 36          |
|          | cardiac hypertrophy            | 42                                  | cardiac hypertrophy                              | 42          |
|          | heart pacemaker placement      | 7                                   | heart pacemaker placement                        | 7           |

rce: E-Da hospital ple size: 1924 ple category:  $19 \rightarrow 9$ ge resolution: 0.16 mm per pixel ge format: DICOM ge size: 1824~2688 pixels in length 1536~2680 pixels in width

## Introduction

Dataset

Source data

| Name                                                            | Source                       | Size                                                                 | Class                                           | Feature                                         |
|-----------------------------------------------------------------|------------------------------|----------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|
| ImageNet                                                        | Open database                | 14 million+                                                          | 20000+                                          | large and diverse                               |
| ChestX-ray8                                                     | Open database<br>(NIH)       | 121,010                                                              | 15                                              | Medium-sized but similar to target data         |
| ChestX-ray8:                                                    |                              | Pneumothorax<br>Pneumonia 🗖 1431                                     | 5302                                            |                                                 |
| Sample size: 121,0<br>Sample category:                          | )10<br>normal + 14 diseases  | Pleural_Thickening 3<br>Nodule<br>Mass<br>Infiltration<br>Hernia 227 | 385<br>331<br>5782<br>19894                     |                                                 |
| Image format: PN                                                | G                            | Fibrosis 168                                                         |                                                 |                                                 |
| Image size: 1024×                                               | 1024 pixels                  | Effusion<br>Edema 230                                                | 13317<br>3                                      |                                                 |
| Download source:<br>https://nihcc.app.bo<br>NIHCC/folder/369387 | ox.com/v/ChestXray-<br>65345 | Cardiomegaly 27<br>Atelectasis normal 0                              | 4667       76       11559       10000     20000 | 61487<br>30000 40000 50000 60000 70000 <b>5</b> |





#### Preprocessing

#### **Data preprocessing**

• Set unique ID for each image

93

84

- Discard duplicates and outliers
- Delete the least class

1200

1000

800

600

400

200

1070

• Use one-hot to encode disease labels

30

133

36

#### Image preprocessing

#### For target data

- Convert DICOM format to PNG format
- Resize the images into  $512 \times 512$  pixels
- Use image augmentation and class weight to deal with insufficient and imbalanced data

#### For source data (ChestX-ray8)

- Change 2-dimension images into 3-dimensional RGB format
- Wrote Python class 'MySequence' to read images in batch



### Modelling

|                      | ResNet                             | DenseNet                               |
|----------------------|------------------------------------|----------------------------------------|
|                      | residual learning                  | dense shortcuts                        |
| Innovation           | shortcuts connection               | feature reuse                          |
|                      | no degradation                     | transition layer                       |
| Output in L layer    | $X_{L} = H_{L}(x_{L-1}) + x_{L-1}$ | $x_{L-1} = H_L([x_0, x_1,, x_{L-1},])$ |
| Splicing method      | element-wise add                   | concatenate                            |
| training speed       | fast                               | slow                                   |
| Number of parameters | big                                | small                                  |





#### Modelling ResNet50

| Layers                  | Output Size | Structure                                                                                    | 50-layers | sublayers in keras |                                                                                                                             |
|-------------------------|-------------|----------------------------------------------------------------------------------------------|-----------|--------------------|-----------------------------------------------------------------------------------------------------------------------------|
| conv1                   | 121 x 121   | 7x7,64, stride 2                                                                             | 1         | 7*                 |                                                                                                                             |
|                         |             | 3x3 max pool, stride 2                                                                       |           |                    |                                                                                                                             |
| conv2_x                 | 56 x 56     | $\begin{bmatrix} 1 \times 1,64 \\ 3 \times 3,64 \\ 1 \times 1,256 \end{bmatrix}$ x 3         | 3 x 3     | 12**+10***+10      | Number of frozen layers                                                                                                     |
|                         |             |                                                                                              |           |                    | The first 10 layers (39)                                                                                                    |
| conv3_x                 | 28 x 28     | $\begin{bmatrix} 1 \times 1,128 \\ 3 \times 3,128 \\ 1 \times 1,512 \end{bmatrix} \times 4$  | 3 x 4     | 12+10+10+10        |                                                                                                                             |
| conv4_x                 | 14 x 14     | $\begin{bmatrix} 1 \times 1,256 \\ 3 \times 3,256 \\ 1 \times 1,1024 \end{bmatrix} \ge 6$    | 3 x 6     | 12+10+10+10+10+10  | The first 22 layers (81)                                                                                                    |
|                         |             | r 1 × 1 512 1                                                                                |           |                    | The first 40 layers (143)                                                                                                   |
| conv5_x                 | 7 x 7       | $\begin{bmatrix} 1 \times 1,512 \\ 3 \times 3,512 \\ 1 \times 1,2048 \end{bmatrix} \times 3$ | 3 x 3     | 12+10+10           | Ex.                                                                                                                         |
| classification<br>layer | 1 x 1       | average pool, 1000-d<br>fc, softmax                                                          | 1         | 1                  | <pre>for layer in res.layers:     layer.trainable = False for layer in res.layers[39:]:     layer.trainable = True 10</pre> |

### Modelling

DenseNet121

| Layers               | Output Size | Structure                                                                     | 121-layers | sublayers in keras |                           |
|----------------------|-------------|-------------------------------------------------------------------------------|------------|--------------------|---------------------------|
| convolution          | 121x121     | 7x7 conv, stride 2                                                            | 1          | Q*                 |                           |
| pooling              | 56x56       | 3x3 max pool, stride 2                                                        | 1          |                    |                           |
| dense block (1)      | 56x56       | $\begin{bmatrix} 1 \times 1 & conv \\ 3 \times 3 & conv \end{bmatrix} \ge 6$  | 2x6        | 7**x6              |                           |
| transition lawer (1) | 56x56       | 1x1 conv                                                                      | 1          | 4***               | Number of frozen layers   |
| transition layer (1) | 28x28       | 2x2 average pool, stride 2                                                    | 1          | -                  |                           |
| dense block (2)      | 28x28       | $\begin{bmatrix} 1 \times 1 & conv \\ 3 \times 3 & conv \end{bmatrix} \ge 12$ | 2x12       | 7x12               | The first 14 layers (55)  |
| transition larme (2) | 28x28       | 1x1 conv                                                                      | 1          | 4                  |                           |
| transition layer (2) | 14x14       | 2x2 average pool, stride 2                                                    | 1          | +                  |                           |
| dense block (3)      | 14x14       | $\begin{bmatrix} 1 \times 1 & conv \\ 3 \times 3 & conv \end{bmatrix} \ge 24$ | 2x24       | 7x24               | The first 39 layers (143) |
| transition layer (3) | 14x14       | 1x1 conv                                                                      | 1          | 4                  |                           |
| ullishich layer (5)  | 7x7         | 2x2 average pool, stride 2                                                    | -          |                    | The first 99 large (215)  |
| dense block (4)      | 7x7         | $\begin{bmatrix} 1 \times 1 & conv \\ 3 \times 3 & conv \end{bmatrix} \ge 16$ | 2x16       | 7x16               | The first 88 layers (315) |
| Classification layer | 1 x 1       | 7x7 global average pool, 1000-d<br>fc, softmax                                | 1          | 1                  | 7-7                       |

Modelling

Parameter settings

| Parameters            | Settings                      |  |  |
|-----------------------|-------------------------------|--|--|
| Optimizer             | Adam                          |  |  |
| Learning Rate         | 1.00E-04                      |  |  |
| Loss                  | Weighted Binary Cross Entropy |  |  |
| Metrics               | Binary Accuracy               |  |  |
| Activation            | Sigmoid                       |  |  |
| Epochs                | 30                            |  |  |
|                       | global average pooling (✓)    |  |  |
|                       | Dense (x)                     |  |  |
| Modify classification | Batch Normalization (x)       |  |  |
| layer                 | Drop Out (✓)                  |  |  |
|                       | Dense (✓)                     |  |  |

W-BCE

 $L_{W-BCE} = \sum_{i} \left\{ \beta_{P} \sum_{k: \ y_{ik}=1} \left[ -\ln\left(\sigma(f_{k}(x_{i}))\right) \right] + \beta_{N} \sum_{k: \ y_{ik}=0} \left[ -\ln\left(1 - \sigma(f_{k}(x_{i}))\right) \right] \right\},$ 

where  $f_k(\mathbf{x}_i)$  is  $\mathbf{x}_i$ 's *k*th input for the final fully-connected layer,  $\beta_p$  is set to  $\frac{|P|+|N|}{|P|}$  while  $\beta_N$  is set to  $\frac{|P|+|N|}{|N|}$ . |P| and |N| are the total number of '1's and '0's in all the dataset.

#### Modelling



#### When

Training data is extremely limited in some emerging professional fields.

Training data and testing data may follow different distributions

Transfer the trained parameters to a new model in order to accelerate and optimize

What

٠

Why

the process of training Inherit the existing neural network and adjust it for new data Standing on the shoulders of giants

Training cost can be very low

Suitable for learning tasks in small datasets •

13



### Modelling Weight training methods

- A: Modifying the final layer
- B: Freezing some layers and retraining the remaining
- C: Training all layers with pre-trained initial values
- **D**: Initializing randomly and training from scratch

| Target data | Source data     | Weight training methods |              |              |          |  |
|-------------|-----------------|-------------------------|--------------|--------------|----------|--|
| Taryet uata | Source uala     | А                       | В            | С            | D        |  |
| ChestX-ray8 | ImageNet        | Х                       | $\checkmark$ | $\checkmark$ | <b>√</b> |  |
|             | ImageNet        | $\checkmark$            | $\checkmark$ | $\checkmark$ | х        |  |
|             | ChestX-ray8     | $\checkmark$            | $\checkmark$ | $\checkmark$ | х        |  |
| E-Da        | ImageNet+ChestX | 1                       | 1            |              |          |  |
|             | -ray8           | V                       | v            | V            | X        |  |

#### Evaluation

#### > Metrics ➢ 5-fold cross-validation Fold 1 Fold 1 Fold 1 Fold 1 Real Yes Real No Fold 1 Predicted Fold 2 Fold 2 Fold 2 Fold 2 Fold 2 $Precision = \frac{TP}{TP + FP}$ True Positive (TP) False Positive (FP) Yes Fold 3 Fold 3 Fold 3 Fold 3 Fold 3 Predicted Fold 4 Fold 4 Fold 4 Fold 4 Fold 4 False Negative (FN) True Negative (TN) No Fold 5 Fold 5 Fold 5 Fold 5 Fold 5 $TPR = \frac{TP}{TP+FN} = Recall$ $FPR = \frac{FP}{FP+TN}$ TP+TN TP+TN+FP+FN Accuracy = validation set **CNN Model** ROC CURVE Binary Accuracy Train randomly split 1:9 Test + AUC BETTE 1.0 PERFECT CLASSIFIER Transfer Learning training set POSITIVE RATE - REMOON CLASSIFIER Binary Accuracy AUC Dataset 1 Model 1 Binary Accuracy RUE Model 2 Dataset 2 AUC Average Binary Accuracy Dataset 3 Model 3 evaluate transfer learning methods AUC standard deviation Dataset 4 Model 4 Binary Accuracy AUC Dataset 5 Model 5 0.0 1.0 Binary Accuracy 0.2 0.8 0.4 0.6 0.0 AUC FALSE POSITIVE RATE 6

**Methods** 

Frozen layers

For ChestX-ray8

| Model       | Frozen Layers | Binary Accuracy in<br>Testing Data | Loss   |
|-------------|---------------|------------------------------------|--------|
|             | 10            | 0.724                              | 9.157  |
| ResNet50    | 22            | 0.827                              | 4.281  |
|             | 40            | 0.878                              | 3.861  |
| DenseNet121 | 14            | 0.765                              | 4.094  |
|             | 39            | 0.813                              | 11.572 |
|             | 88            | 0.894                              | 7.192  |

Ex. Accuracy on Training and Validation Data for RsNet50



✓ ResNet50 prefers freezing the first 40 layers;
 ✓ DenseNet121 prefers freezing the first 88 layers

17

#### Frozen layers

For E-Da data

#### Binary accuracy in testing data

| Frozen             | Pre-trained Weights |                                             |                     |  |  |
|--------------------|---------------------|---------------------------------------------|---------------------|--|--|
| layers             | ChestX-ray8         | ImageNet(I <sup>**</sup> ) +<br>ChestX-ray8 | ImageNet            |  |  |
| B <sup>*</sup> _10 | 55.69% (+/- 12.45%) | 46.08% (+/- 5.63%)                          | 84.12% (+/- 10.23%) |  |  |
| B_22               | 74.79% (+/- 13.15%) | 74.93% (+/- 9.20%)                          | 82.80% (+/- 8.13%)  |  |  |
| B_40               | 87.08% (+/- 10.59%) | 85.12% (+/- 9.22%)                          | 81.41% (+/- 8.37%)  |  |  |

#### AUC in testing data

| Erozon | Pre-trained Weights |                               |                   |  |  |
|--------|---------------------|-------------------------------|-------------------|--|--|
| layers | ChestX-ray8         | ImageNet (I) +<br>ChestX-ray8 | ImageNet          |  |  |
| B_10   | 51.89% (+/- 2.93%)  | 51.17% (+/- 2.9%)             | 48.68% (+/-2.34%) |  |  |
| B_22   | 51.43% (+/-1.52%)   | 51.05% (+/-3.84%)             | 48.77% (+/-5.12%) |  |  |
| B_40   | 49.62% (+/-1.72%)   | 50.47% (+/-1.43%)             | 46.85% (+/-5.74%) |  |  |

 ✓ For ChestX-ray8 and ImageNet(I)+ChestX-ray8, freezing more layers leads to significantly better binary accuracy but vaguely worse AUC.
 ✓ For ImageNet, freezing more

layers results in worse binary accuracy and AUC

Notes:: \* B refers to the transfer method that is to freeze some layers.

\*\* I means initializing the weight in the beginning to connect ImageNet with ChestX-ray8.

#### Methods combination

ResNet50

 Method A prefers ImageNet(F)+ChestX-ray8
 Method B is less sensitive to pre-trained weight

#### Binary accuracy in testing data

 Method C performs better in ImageNet and ImageNet(F)+ChestX-ray8

| Dro trained Weight         | Methods             |                     |                     |  |  |
|----------------------------|---------------------|---------------------|---------------------|--|--|
| Pre-trained weight         | Α                   | В                   | С                   |  |  |
| ImageNet                   | 77.09% (+/- 12.75%) | 84.12% (+/- 10.23%) | 87.30% (+/- 13.96%) |  |  |
| Chest-Xray8                | 51.20% (+/- 7.02%)  | 87.08% (+/- 10.59%) | 81.11% (+/- 13.08%) |  |  |
| ImageNet (F) + ChestX-ray8 | 81.81% (+/- 6.34%)  | 84.01% (+/- 9.09%)  | 87.14% (+/- 5.65%)  |  |  |
| ImageNet (I) + ChestX-ray8 | 64.59% (+/- 19.36%) | 85.12% (+/- 9.22%)  | 78.90% (+/- 12.02%) |  |  |

**Results** 

#### AUC in testing data

Method C is the best choice

| Due trained Maight         | Methods            |                    |                     |  |  |
|----------------------------|--------------------|--------------------|---------------------|--|--|
| Pre-trained weight         | А                  | В                  | С                   |  |  |
| ImageNet                   | 52.02% (+/- 3.49%) | 48.77% (+/-5.12%)  | 91.07% (+/-12.3%)   |  |  |
| ChestX-ray8                | 49.79% (+/-0.44%)  | 51.89% (+/- 2.93%) | 80.66% (+/-13.8%)   |  |  |
| ImageNet (F) + ChestX-ray8 | 50.1% (+/- 1.03%)  | 49.58% (+/-1.64%)  | 82.83% (+/-7.49%)   |  |  |
| ImageNet (I) + ChestXray8  | 49.87% (+/- 0.29%) | 51.17% (+/- 2.9%)  | 77.53% (+/- 14.65%) |  |  |

#### Methods combination

DenseNet121

#### Binary accuracy in testing data

|                            | Methods             |                    |                    |
|----------------------------|---------------------|--------------------|--------------------|
| Pre-trained weight         | А                   | В                  | С                  |
| ImageNet                   | 90.08% (+/- 4.29%)  | 95.07% (+/- 0.02%) | 95.10% (+/- 2.81%) |
| ImageNet (F) + ChestX-ray8 | 74.54% (+/- 11.95%) | 89.68% (+/- 5.45%) | 81.02% (+/- 8.59%) |

✓ ImageNet was better than ImageNet(F)+ ChestX-ray8.

✓ Method B took less time and resources than Method C and produced better results than Method A

#### AUC in testing data

| Due tueined Mieight        | Methods            |                    |                     |
|----------------------------|--------------------|--------------------|---------------------|
| Pre-trained weight         | А                  | В                  | С                   |
| ImageNet                   | 67.81% (+/- 2.03%) | 71.30% (+/- 2.83%) | 95.49% (+/- 6.58%)  |
| ImageNet (F) + ChestX-ray8 | 52.65% (+/- 3.61%) | 57.02% (+/- 1.67%) | 78.44% (+/- 10.86%) |

✓ The best weight is ImageNet and the best method is C
 ✓ Combination of ImageNet and C achieved an excellent result



Weights comparison

#### Compound weight

Initial values vs Frozen layers

Note : The compound weight comes from ImageNet and ChestX-ray8 through initial values or frozen layers



- Initializing parameters gives good results but consumes a lots of computing resources
- ✓ Freezing layers is more effective based on its benefits and costs together, but the number of frozen layers is hard to determine

#### Weights comparison

Single weight vs Compound weight

Results

Two datasets provide more information than one dataset weight

Compound weight is demanding and does not necessarily perform better

✓ Specific implementation of transfer learning depends on the research objectives and priorities

#### Model performance

#### Accuracy

# ResNet50

|                           | Binary Accuracy     | AUC               |
|---------------------------|---------------------|-------------------|
| Without Transfer Learning | 77.48% (+/- 12.14%) | 76.46%(+/-9.14%)  |
| With Transfer Learning    | 87.14% (+/- 5.65%)  | 91.07% (+/-12.3%) |

By transfer learning, the average AUC value has been raised by 15%, the average binary accuracy was increased by nearly 10% while the standard deviation was reduced by more than half

#### DenseNet121

|                           | Binary Accuracy     | AUC                 |
|---------------------------|---------------------|---------------------|
| Without Transfer Learning | 65.72% (+/- 18.12%) | 73.60% (+/- 10.50%) |
| With Transfer Learning    | 95.10% (+/- 2.81%)  | 95.49% (+/- 6.58%)  |

By transfer learning, the average binary accuracy has risen dramatically by nearly 30% with its standard deviation falling to less than 3%, the average value of AUC has grown by more than 20% with its standard deviation going down to around 6.6%.

#### Model performance

Costs

#### Computing Resources When Training ResNet50 on ChestX-ray8

| Methods | Batch Size | Minimum<br>GPUs | TIME/epoch | Trainable<br>parameters |
|---------|------------|-----------------|------------|-------------------------|
| Α       | 128        | 3               | 3703s      | 26,637                  |
| B_40    |            |                 | 3745s      | 15,002,637              |
| B_22    | 128        | 3               | 3762s      | 22,111,245              |
| B_10    |            |                 | 4184s      | 23,334,413              |
| C/D     | 16         | 4               | 5902s      | 23,561,229              |

#### Computing Resources When Training DenseNet121 on ChestX-ray8

| Methods | Batch Size | Minimum<br>GPUs | TIME/epoch | Trainable<br>parameters |
|---------|------------|-----------------|------------|-------------------------|
| Α       | 128        | 3               | 4166s      | 13,325                  |
| B_88    |            |                 | 3859s      | 2,172,429               |
| B_39    | 128        | 3               | 4184s      | 5,537,037               |
| B_14    |            |                 | 4645s      | 6,589,069               |
| C/D     | 16         | 4               | 10884s     | 6,967,181               |

 Methods A and B have clear advantages allowing of bigger batch size and demanding less time and memory.

 Under limited hardware conditions and training time, we'd better use transfer learning Method A or B in deep learning tasks.

25

### Summary

| Subject                            | Contents                                       | Results                                        |  |
|------------------------------------|------------------------------------------------|------------------------------------------------|--|
|                                    | 10/22/40 layers in ResNet50                    | freeze 40 layers in ResNet50                   |  |
| FIOZEILIAyers                      | 14/39/88 layers in DenseNet121                 | freeze 88 layers in DenseNet121                |  |
| Weight training methods            | A, B, C                                        | С                                              |  |
| Pre-trained weights                | ImageNet, ChestX-ray8,<br>ImageNet+ChestX-ray8 | ImageNet                                       |  |
| Combination of methods and weights |                                                | ImageNet + C gets the highest accuracy         |  |
|                                    |                                                | ImageNet+ChestX-ray8 + A gets the lowest costs |  |
|                                    |                                                | ChestX-ray8 + B is the most cost-efficient     |  |
|                                    |                                                | 26                                             |  |

### Conclusion

ImageNet performs better than ChestX-ray8 ImageNet+ChestX-ray8 might perform best

#### weights

Initializing parameters may help, but still needs a lot of computing resources

DenseNet121 performs better than ResNet50



Transfer learning is helpful to improve models

Different combinations have different strengths

- Volume and variety are more valuable for source data
- Compound weight may work better if frozen layers is determined wisely
- The initial value is very important
- It's expected to build the most cost-effective model by freezing some layers

- Trade-off between accuracy and cost based on your goal and available resources
- Explore problems in their specific circumstances and turn to the most suitable methods or tools

27